Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Nitric Oxide ; 136-137: 1-7, 2023 07 01.
Article in English | MEDLINE | ID: covidwho-2319499

ABSTRACT

BACKGROUND: Impairment of ventilation and perfusion (V/Q) matching is a common mechanism leading to hypoxemia in patients with acute respiratory failure requiring intensive care unit (ICU) admission. While ventilation has been thoroughly investigated, little progress has been made to monitor pulmonary perfusion at the bedside and treat impaired blood distribution. The study aimed to assess real-time changes in regional pulmonary perfusion in response to a therapeutic intervention. METHODS: Single-center prospective study that enrolled adult patients with ARDS caused by SARS-Cov-2 who were sedated, paralyzed, and mechanically ventilated. The distribution of pulmonary perfusion was assessed through electrical impedance tomography (EIT) after the injection of a 10-ml bolus of hypertonic saline. The therapeutic intervention consisted in the administration of inhaled nitric oxide (iNO), as rescue therapy for refractory hypoxemia. Each patient underwent two 15-min steps at 0 and 20 ppm iNO, respectively. At each step, respiratory, gas exchange, and hemodynamic parameters were recorded, and V/Q distribution was measured, with unchanged ventilatory settings. RESULTS: Ten 65 [56-75] years old patients with moderate (40%) and severe (60%) ARDS were studied 10 [4-20] days after intubation. Gas exchange improved at 20 ppm iNO (PaO2/FiO2 from 86 ± 16 to 110 ± 30 mmHg, p = 0.001; venous admixture from 51 ± 8 to 45 ± 7%, p = 0.0045; dead space from 29 ± 8 to 25 ± 6%, p = 0.008). The respiratory system's elastic properties and ventilation distribution were unaltered by iNO. Hemodynamics did not change after gas initiation (cardiac output 7.6 ± 1.9 vs. 7.7 ± 1.9 L/min, p = 0.66). The EIT pixel perfusion maps showed a variety of patterns of changes in pulmonary blood flow, whose increase positively correlated with PaO2/FiO2 increase (R2 = 0.50, p = 0.049). CONCLUSIONS: The assessment of lung perfusion is feasible at the bedside and blood distribution can be modulated with effects that are visualized in vivo. These findings might lay the foundations for testing new therapies aimed at optimizing the regional perfusion in the lungs.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Respiratory Insufficiency , Adult , Humans , Middle Aged , Aged , Pulmonary Circulation , Prospective Studies , Pulmonary Gas Exchange , COVID-19/complications , SARS-CoV-2 , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/etiology , Nitric Oxide , Hypoxia , Respiratory Insufficiency/drug therapy , Administration, Inhalation
2.
Am J Respir Crit Care Med ; 206(6): 799-800, 2022 09 15.
Article in English | MEDLINE | ID: covidwho-2038414
3.
Ann Intensive Care ; 12(1): 35, 2022 Apr 12.
Article in English | MEDLINE | ID: covidwho-1785171

ABSTRACT

BACKGROUND: External chest-wall compression (ECC) is sometimes used in ARDS patients despite lack of evidence. It is currently unknown whether this practice has any clinical benefit in patients with COVID-19 ARDS (C-ARDS) characterized by a respiratory system compliance (Crs) < 35 mL/cmH2O. OBJECTIVES: To test if an ECC with a 5 L-bag in low-compliance C-ARDS can lead to a reduction in driving pressure (DP) and improve gas exchange, and to understand the underlying mechanisms. METHODS: Eleven patients with low-compliance C-ARDS were enrolled and underwent 4 steps: baseline, ECC for 60 min, ECC discontinuation and PEEP reduction. Respiratory mechanics, gas exchange, hemodynamics and electrical impedance tomography were recorded. Four pigs with acute ARDS were studied with ECC to understand the effect of ECC on pleural pressure gradient using pleural pressure transducers in both non-dependent and dependent lung regions. RESULTS: Five minutes of ECC reduced DP from baseline 14.2 ± 1.3 to 12.3 ± 1.3 cmH2O (P < 0.001), explained by an improved lung compliance. Changes in DP by ECC were strongly correlated with changes in DP obtained with PEEP reduction (R2 = 0.82, P < 0.001). The initial benefit of ECC decreased over time (DP = 13.3 ± 1.5 cmH2O at 60 min, P = 0.03 vs. baseline). Gas exchange and hemodynamics were unaffected by ECC. In four pigs with lung injury, ECC led to a decrease in the pleural pressure gradient at end-inspiration [2.2 (1.1-3) vs. 3.0 (2.2-4.1) cmH2O, P = 0.035]. CONCLUSIONS: In C-ARDS patients with Crs < 35 mL/cmH2O, ECC acutely reduces DP. ECC does not improve oxygenation but it can be used as a simple tool to detect hyperinflation as it improves Crs and reduces Ppl gradient. ECC benefits seem to partially fade over time. ECC produces similar changes compared to PEEP reduction.

5.
Am J Respir Crit Care Med ; 203(5): 575-584, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-1452989

ABSTRACT

Rationale: Obesity is characterized by elevated pleural pressure (Ppl) and worsening atelectasis during mechanical ventilation in patients with acute respiratory distress syndrome (ARDS).Objectives: To determine the effects of a lung recruitment maneuver (LRM) in the presence of elevated Ppl on hemodynamics, left and right ventricular pressure, and pulmonary vascular resistance. We hypothesized that elevated Ppl protects the cardiovascular system against high airway pressure and prevents lung overdistension.Methods: First, an interventional crossover trial in adult subjects with ARDS and a body mass index ≥ 35 kg/m2 (n = 21) was performed to explore the hemodynamic consequences of the LRM. Second, cardiovascular function was studied during low and high positive end-expiratory pressure (PEEP) in a model of swine with ARDS and high Ppl (n = 9) versus healthy swine with normal Ppl (n = 6).Measurements and Main Results: Subjects with ARDS and obesity (body mass index = 57 ± 12 kg/m2) after LRM required an increase in PEEP of 8 (95% confidence interval [95% CI], 7-10) cm H2O above traditional ARDS Network settings to improve lung function, oxygenation and [Formula: see text]/[Formula: see text] matching, without impairment of hemodynamics or right heart function. ARDS swine with high Ppl demonstrated unchanged transmural left ventricular pressure and systemic blood pressure after the LRM protocol. Pulmonary arterial hypertension decreased (8 [95% CI, 13-4] mm Hg), as did vascular resistance (1.5 [95% CI, 2.2-0.9] Wood units) and transmural right ventricular pressure (10 [95% CI, 15-6] mm Hg) during exhalation. LRM and PEEP decreased pulmonary vascular resistance and normalized the [Formula: see text]/[Formula: see text] ratio.Conclusions: High airway pressure is required to recruit lung atelectasis in patients with ARDS and class III obesity but causes minimal overdistension. In addition, patients with ARDS and class III obesity hemodynamically tolerate LRM with high airway pressure.Clinical trial registered with www.clinicaltrials.gov (NCT02503241).


Subject(s)
Pulmonary Atelectasis , Respiratory Distress Syndrome , Shock , Animals , Hemodynamics/physiology , Humans , Obesity/complications , Positive-Pressure Respiration/methods , Respiratory Distress Syndrome/therapy , Swine
6.
J Am Coll Emerg Physicians Open ; 1(6): 1240-1249, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-799574

ABSTRACT

Objective: To quantify how the first public announcement of confirmed coronavirus disease 2019 (COVID-19) in Italy affected a metropolitan region's emergency medical services (EMS) call volume and how rapid introduction of alternative procedures at the public safety answering point (PSAP) managed system resources. Methods: PSAP processes were modified over several days including (1) referral of non-ill callers to public health information call centers; (2) algorithms for detection, isolation, or hospitalization of suspected COVID-19 patients; and (3) specialized medical teams sent to the PSAP for triage and case management, including ambulance dispatches or alternative dispositions. Call volumes, ambulance dispatches, and response intervals for the 2 weeks after announcement were compared to 2017-2019 data and the week before. Results: For 2 weeks following outbreak announcement, the primary-level PSAP (police/fire/EMS) averaged 56% more daily calls compared to prior years and recorded 9281 (106% increase) on Day 4, averaging ∼400/hour. The secondary-level (EMS) PSAP recorded an analogous 63% increase with 3863 calls (∼161/hour; 264% increase) on Day 3. The COVID-19 response team processed the more complex cases (n = 5361), averaging 432 ± 110 daily (∼one-fifth of EMS calls). Although community COVID-19 cases increased exponentially, ambulance response intervals and dispatches (averaging 1120 ± 46 daily) were successfully contained, particularly compared with the week before (1174 ± 40; P = 0.02). Conclusion: With sudden escalating EMS call volumes, rapid reorganization of dispatch operations using tailored algorithms and specially assigned personnel can protect EMS system resources by optimizing patient dispositions, controlling ambulance allocations and mitigating hospital impact. Prudent population-based disaster planning should strongly consider pre-establishing similar highly coordinated medical taskforce contingencies.

SELECTION OF CITATIONS
SEARCH DETAIL